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Growth equations for the Wolf-Villain and Das Sarma—Tamborenea models
of molecular-beam epitaxy
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We derive the growth equations for the Wolf-Villain and Das Sarma—Tamborenea models based on the
master-equation method. The Wolf-Villain model is shown to obey the conserved growth equation
ohlat=—v,V*+ A,V 3(Vh)24+ 27 N 1one1 V- (V)2 14+ F+ 2, which is expected to exhibit the scaling
behavior of the Edwards-Wilkinson universality class. We find that the Das Sarma—Tamborenea model is
governed by the Villain-Lai—-Das Sarma equatioh/dt=—v,V*h-+\,,V2(Vh)?+F+ 7 in contrast to
former results. The physical origin of the difference between these two similar models is also discussed.
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PACS numbe(s): 05.40+j, 81.15.Hi, 68.35.Fx

I. INTRODUCTION However, numbers of recent extensive studig&43-17
cast doubt on the original results and suggested that these
Kinetic roughening of nonequilibrium surface growth hastwo diffusion models actually belong to different universality
been of great interest in recent years. The kinetic growtltlasses in spite of their apparent similarities. Much more
processes have been intensively studied via various discrefgtention has been focused on the WV model. Some numeri-
models and continuum equations and exhibit nontrivial scalcal simulationg4,13] have shown that in 21 dimensions
ing behavior[1,2]. The surface widttW, which is the root-  the WV model corresponds to the Villain—Lai—Das Sarma
mean-square fluctuation of the _surface _height,_ scales 8¥LD) equation[9,10] with the relevanv2(Vh)2 nonlinear-
W(L,t)~L*f(t/L?), where the scaling functiof(x) is con- it Byt a detailed analysis based on the study of surface
stant forx>1 andx” for x<1 with f=a/z. The scaling iffusion current[14] and computer simulation&l5] re-
behaviors of the growth are characterized by the_roughne%med that the WV model asymptotically belongs to the
exponenta, the growth exponeng, and the dynamical €x- g ards-Wilkinso(EW) universality clas$18] correspond-

ponentz, and these exponents determine the universalit)‘/ng to a continuum differential equation with the?h EW
class.

. . term. More recently, crossover behavior in the WV model
Recently, much attention has been paid to the surfacgas been observed in botk1 and 2+1 dimension§16,17
growth via molecular-beam epitaxMBE) [3—11]. The con- SR

served growth conditions are applied in the idealized MBEEXtenS'Ve computer simulation was carried out bwlﬁ_uer
without both defect and evaporation, and there are many disand, Kotrl§[16] i Sh9W the crossover from .the scallmg be-
crete model§3—8] describing this type of growth process. havior of linear equatiofil) to the VLD behavior and fllnally
The simulations using these discrete models are carried olft€ crossover to the EW class. Moreover, according to a
according to the given growth rules that govern the physicapatural extension of the WV model within the next-nearest-
properties of surface growth. Among a large number ofh€ighbor approximation, which leads to no change of the
growth models, two similar microscopic models proposedmain results, Ryu and KirflL 7] observed the crossover effect
respectively, by Wolf and Villain5] and Das Sarma and from the VLD behavior to the EW class in a clearer manner.
Tamborened 6] have attracted much interest. Instead ofIn these studie$16,17, the WV model is thought to be
moving to the local height minimum, the deposited particlesgoverned by a continuum growth equation with the existence
relax into sites maximizing the coordination numbers in theof the V2h EW term, which is more relevant than all other
Wolf-Villain (WV) model or to neighboring kink sites in the nonlinear terms and determines the asymptotic behavior of
Das Sarma-Tamborend®T) model, respectively. In the the model.

early simulationg5,6], the two models were shown to be It has been found by studying the height-height correla-
within the same universality class and follow the Herring-tion function and the structure factfit9] that the DT model

Mullins linear diffusion equatiofil?2] obeys anomalous dynamic scaling. A similar result has been
presented for the WV mod¢R0,16. Recently, it has been
sh suggested by Kruf21] that in the absence of tilt invariance

—=—1,V*h+ 7, ) the DT model may be described by a continuum growth

at equation with an infinite sequence of relevant terms

A2oV2(Vh)2+\,,V2(Vh)4+ .- -, which is just the VLD
where h(x,t) is the height of the surface at time in equation if only the first nonlinearity is kept. Halpin-Healy
d=d’+1 dimensionsd’ is the substrate dimensiow, is  and Zhand?2] also estimated that the DT model results in the
d’-dimensional vector, ang is the nonconserved Gaussian asymptotic behavior that most likely will be VLD based on
white noise. the analysis of the tilt-dependent surface current proposed by
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Krug, Plischke, and Siegeftl4]. But to our knowledge, covariance can be obtained. Subsequently, a nonrigorous
these suggestions have not been verified by numerical simuegularization procedure is introduced to pass to the con-
lation or analytical deduction. tinuum limit and the continuum stochastic equation is di-

There have been several attempts to establish the equiveectly derived. Here we use the method for one-dimensional
lence between the discrete growth models and correspondirsybstrate growti22] to derive the continuum growth equa-
continuum growth equationg3—10. Most of the work is tion for the WV model, and the generalization to higher di-
done numerically by comparing the simulated exponents ofensions is straightforwai@3].
the discrete models with those of the continuum equations. First, we specify the configuration of the surface by
There are also some analytic studies to establish the connee={h,,h,, ...}, whereh;, i=1,2,..., are thecolumn
tion [22—26. Beginning with the master-equation descrip- height variables. The evolution of the joint probability distri-
tion, Vvedenskyet al.[22,23 proposed a systematic method bution P(H;t) is determined by a birth-death-type master
to derive the continuum equations from growth rules of theequation
discrete models. Originally, this method was introduced for B(H:t)
the Arrhenius-type surface proces$g,23, and recently it d it , . , )
has been successfully appli¢®4] to deriving the Kardar- at _?1 W(H",H)P(H ’t)_%‘ W(HHD)P(H:D),
Parisi-Zhang equatiof27] from the restricted solid-on-solid (4
(RSOS model[28].

In this work we investigate the WV and DT models by whereW(H,H") is the transition rate from the configuration

deriving their corresponding growth equations ir1l di- H to the configuratiorH’ and reflects the microscopic pro-
mensions based on the method of Vvedensksl. [22,23.  cess of the discrete model.
For the WV model, the EW termV{*h) does not exist; in- The above master equation can be turned into the
stead, the continuum growth equation becomes Kramers-Moyal form[32] with the transition moments of
W(H,H'). In the limit of large system size, it has been
dh 4 ) ) shown by Fox and Keizd33] that only the first and second
ot —vaV I+ AV(Vh) transition moments

[

+ D Nons1V- (V)2 14 F 4 g, ) KO=> (h/—h)W(HH"), (5)
n=1 H'

where vy, Ny, and\ o, are growth coefficients and is 2"

the deposition flux. According to the conclusion of both the

direct numerical integration[29] and the dynamical K{P=2 (h{—h)(h/—h)W(H,H"), (6)
renormalization-grougDRG) analysis[30,31], the relevant H’

V- (Vh)?"*! term in Eq.(2) is verified to produce the scal-
ing properties of the EW class K,,,,1 IS positive. How-
ever, we obtain thak13<0, A15>0, A17<<0, N1g>0, .. .,
that is, the coefficientd ;5,1 are negative and positive al- IP(H:1) g 1
ternatively. In 11 dimensions, we expect EQ) to obey ————=——[KYP(H;t)]+ =
the EW asymptotic behavior according to some phenomeno- at oh 2 ohioh; 7
logical analyses, although further extensive studies are @)
needed. We also find that the DT model is governed by thgynich is equivalent to the Langevin equation

VLD equation

are required, and the Kramers-Moyal form reduces to the
Fokker-Planck equation

2

[K{Z'P(H;1)],

dh; i
ah , e g~ K+ o). ®
E:_V‘lv h+)\22V (Vh) +F+77, (3)
The Gaussian white noisg in Eq. (8) satisfies
which is inconsistent with the previous numerical simula-

tions [6,4,19, but confirms the estimation of Halpin-Healy (n;(1))=0, (9)
and Zhand2].
In Secs. Il and Ill we show the derivation of the growth (m() 7 (t))=K{Ps(t—t). (10)
equations for the WV model and the DT model, respectively. _ _ _ _
The discussion and conclusion are presented in Sec. IV. In previous work, the Langevin equati¢8) was obtained
on the condition that the intrinsic fluctuations are not too
Il. GROWTH EQUATION FOR THE WOLF-VILLAIN large[22,24. When_thc_a intrinsic fluctuations grow large and
MODEL consequently the distributiod(H;t) becomes broad, we can
make use of a limit theorem of Kur{34] to handle the large
The derivation process in the method of Vvedenskwl.  intrinsic fluctuations. Therefore, as shown by Fox and Keizer

[22,23 begins with the master-equation description of the[33], the Kurtz limit theorem produces the Fokker-Planck
microscopic dynamics of the discrete model. With the givenequation(7), which is equivalent to E¢(8) in the Ito version
transition rates between configurations of the lattice, the nonef stochastic calculus. Thus, for the MBE growth models
linear discrete Langevin equation and its associated noissuch as the WV and DT models, where the surfaces are very
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rough and the step height distribution spreads [@®21], sition time for a layer ig- and the configuration of the lattice
the Langevin equatiofB) can determine the growth dynam- is changed via random deposition at an average rate of
ics of the models and give a description of the rough growthr~1. Therefore, the transition rate is written as

surfaces. Therefore, to obtain the explicit form of the discrete

Langevin equations and the noise covariance, we should de- N -1 (1) s( ! "R

termine the quantityV(H,H’) according to the growth rule W(HHY =7 ; Wi oy 'hk+a)j1;[k othi.hy)

of the specific discrete model and, subsequently, the transi-

tion momentsK(" andK{?) using Egs(5) and (6). w@s(hl_ he+a) TT & .h)

In the WV model[5], a particle is deposited onto the k kel ke Tl e T
substrate randomly and is allowed to relax into the surface
site with the strongest binding, i.e., the largest coordination +Wf<3)5(h|i+1,hk+1+a) H s(h! ,h) |,
numbers. If more than one neighboring site is equally pref- jEKT1 I
erable, one of them is chosen at random. During the growth (11)

process, if a particle sticks on one siteh;—h;+a, where
a is the lattice constant. We suppose that the average depahere

W= 0 (1= M) O (N 1= i 2) (1,7
X 8(his1,hi) + O (h—1 =) O (hyy 1 —hy) — 8(hy—1,h) S(his 1, hi) +H[1=O (he—hy-1)]
X[1=0(he1=h)]O (s 1= hyy2) +O (g —hy_2)[1-O(he— 1 —hy) ]
X[1=0(hy—he1)], (12

wi?'=8(h_1,h) 8(hy ,hes D[1—O(he_1—hy_5)]
X(O(hyi 1= Ny )+ 3[1-O (N1 =it 2)])
+ 8(hy e D= O (- 1= ) I[O (hy 1~ iy 2)
+[1=O(hys 1= hy, ) I[1=O (-1 —hy )]+ 3O (M1~ hy_2))]
+ 5 8 1,)[L= O (M ;=) L1 = O (M3 =Ny 2)]1O (e 1= )
+[1=0(hy_ ;=11 = O (hs 1= ) ][ 1= O (3 =i 2) 1O (hy 1= hy o) + F{O (3 —hie_2) O (hy 1= hy )
+[1=O(h 1= hy ) I[1=O(h 1 —hi )1 +[1=O (1= hy)][1-O(he_ 1 —h)I[1-O(h—hy )], (13
and
W= 8(hy 1,0 8(hyhie DIL= O (e 1= My 1O (1= hy2) + 3[1=O (1 —h2)])
+ 3 8(he,hs D[1=0O (1 —h) 1= 0O (hey1—hei2) 10 (hy_ 1 —he )+ 8(he_1,h)[1—O(hy,1—hy)]
X[O(h1=h ) +[1=O(h 1 =N 2)]([1=O(hy 1= his )]+ 3O (M 1=y 2))]
+[1=0(hy_ 1= I[1= O (hr 1= ) J{O (1= )[1=O(hy 1~y )]
+ 3{O(_ 1= 2)O (N 1= hy ) +[1=O (1= hy ) [ 1= O (N1~ i) 1))

H[1=0(h—he)][1-O(h 1= J[1=O(hy 1 =Py o) ] (14)
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Thew{? term presents the situation that a particle is depos- W a ,0%h ) A (#°h)?
ited at sitek and stays there, while the{® andw(® terms K ()= 1 1-A@ 7+ 2(- A1+ 2A)a’| | -7
describe the processes that the deposited particle ak site 5 0l o
hops to the nearest sités- 1 ork+ 1, respectively® (x) in N dh\(a°h _ sAlgt dh\<(o°h +0(a%)
these formulas is the unit step function defined by x|\ ox3 1% ox/) | ox?
_a ,9%h 5 , & [dh\?
o |1 X0 . S|P AR e T AT 2R Ok
=10 if x<0. (19 3l ah3
_oa3a4 2 L ocab
2Aj7a o ox O(a®) (21
From Egs.(12)—(14) we obtain the identity and
a2
w +wi@ +wd =1, (16) K (x,x') = — 8(x=x")+0(a%). (22)

From Eq.(8), the continuum growth equation for the WV
FRodel is just described by E@2) with only the first term

remains 1. From Egs.(5) and (6), the first and second n=1 in the infinite series. that is

transition moments become
dh

E: - V4V4h+)\22V2(Vh)2+ )\13V' (Vh)3+ F+ 7,

a
K=, an @

and the coefficients are given by
KP=akVs;. (18) _a
It is noted that formulag16)—(18) are similar to those of

hot-atom effects discussed by Vvedenskyal. [22]. Thus,
using Egs.(8)—(10), we can obtain the discrete Langevin

equation for the WV model. 2a° 3
Next, presuming that the discrete height variable of the Ni3=— TAl’
surfaceh;(t) can be replaced by a analytic functibifx,t),
we regularize the discrete Langevin equation by expanding a
the nonanalytic quantities and replacing them with analytic F= pt (249

guantities. First, the step function can be approximated by an
:ng;);tllgrssh;frtizggzygi]rbol|c tangent function and expanded iNrhe noise covariance given in EQ.0) is
2

a

<77(x,t)77(x’,t’))=76(x—x’)5(t—t’). (25

o

~ k
O(x) 1+k21 Al (19 Since the unit step function is approximated by the shifted

hyperbolic  tangent function and tachx—x%3
+2x°%/15—17x’/315+ - - -, we haveA;>0, A;<0, As>0,
Then taking the limit of lattice constaat—0, we expand A;<O0, ... andA;, A4, Ag, ... are very small and negli-
(hj+1—hy), (hj=,—h;+,), etc., in powers of, and replace gible in Eq.(19). Therefore, from Eq(24), we obtain that
h;(t) by a functionh(x,t) with x=ia that is smooth at the »,>0, which is consistent with the phenomenological con-
macroscopic scale. During the derivation, we also note theideration\ ,,<<0 andA;3<0.
relation The fourth-order conserved growth equati¢23) was
proposed by Lai and Das Sarrfit0], and V- (Vh)® nonlin-
earity is the most relevant term from the renormalization-
o(hi,h))=0(h;—h;)+O(hj—h;))—-1 (20 group viewpoint. Although there is no EW term in E§23),
the direct numerical integration studig9] and the one-loop
DRG calculatior{ 30] showed that for positiva ;5 the calcu-
according to the definitioil5) of the step function. There- lated exponents are consistent with those of the EW univer-
fore, substituting12)—(14) into (17) and (18), and expand- sality class in #1 dimensions. However, the coefficient
ing up toO(a®), after simple but tedious deduction the tran- \ ;3 we derive is negative, which gives rise to unstable sur-
sition moments are obtained as face growth. This result of instability is surprising and con-
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tradicts the results of numerical simulatiqi$—17 and the  without theV2h term is of EW type. From the terms in Eq.
analysis of surface diffusion currefit4]. Thus we expand (2), one can expect the crossover behaviors that have been
K to higher orders. We find that the terms@fa") for ~ found by computer simulation$16,17. The long time

Ki(l) [i.e., the odd order of, O(a2"" 1), for Wi(1)+Wi(i)1+ needed to observe the crossover to EW pehavior may be due
to the very small value of coefficients\qy,.1 oOf

(3) - ich i i
Wi vanish, which is due to the symmetry between site . .
-] y y -(Vh)2"*1 nonlinearities.

i+n andi—n in the surface, that is, the consideration of
isotropic surface growth in the model. The terms appearing
in the growth equation aren{,n=1) the linear terms . GROWTH EQUATION FOR THE
V2"*2h the nonlinearitiev?™ 1. (Vh)2"*1, which gener- DAS SARMA-TAMBORENEA MODEL
ate termsV?™ 2V2h according to the DRG analysis by
Kshirsagar and Ghaisag31], and the nonlinearities
V2M(Vh)2", which generate term®2™(Vh)? also according
to Kshirsagar and Ghais31]. Among these, the most rel-
evant terms ar&-(Vh)?"*1 which lead to the EW term
V?h if the corresponding coefficients are positive. Therefore
keeping the meaningful lowest-order term&“h and
V?(Vh)?, we obtain the growth equatiof?) for the WV
model.

The DT model is also a random-deposition model and the
growth rule is[6] that the deposited particles can relax into
the nearest kink sites. In the WV model the particles depos-
ited at kink sites with coordination numbi=2 will move
to trapping sites withN.=3, while they will stay at kink
sites in the DT model. Moreover, in contrast to the WV
model, the particles deposited at single-bond sites with
N.=1 choose the nearest kink or trapping sites with the
) . . same possibility. Consequently, there is no distinction be-

We also obtain the explicit forms of coefficieMson.1  tyeen kink sites and trapping sites in the DT model.
of the relevant nonl|near|t|2e§’~(Vh)3 P Mag=> 27a AT The procedure of deriving the continuum growth equation
as in (24) and \15=(—6ATAz—4A1A,+2A1A5)@° 7. IN of the DT model is similar to that of the WV model in Sec.
the forms of\;7 and Ao there are 7 and 13 terms, respec-||. The first step is to write down the transition rate according
tively, an2d we SZhOW %nly the leading ,ONes: to the growth rule. The forms afV(H,H') and the transition
M7=(=6A1As—6A Azt - --)a/7 and Mg=(—6A1A7  momentsk(? andK(? are the same as those of E¢s1),
—12A,A3As— 2A3+ - - -)a'Y 7, where the ellipses represent (17) and(18), butw® w®, andw(® are different because

terms with negligibleA,, A4, and Ag. From the signs of ¢ the different growth rule. They are written as
A4, Az, As, andA; shown above, we have3<0, A\ 15>0,

AN7<0,N1>0, . ... 1) _ _ . _

Thus it is interesting to discuss the properties of B). Wi =0 (1= hi2)O (N 1= hii2) 8(hy— 1, hy)
where the coefficients |, 1 of the relevant terms are nega- X 8(hy,hes 1) +[1—O(h—h_ )10 (h—hy )
tive and positive alternatively. For the WV model only the
downhill surface current is generated in-1 dimensions, +0O(hg—he_1)[1-0(hy—hy.q)]
and according to the method of surface diffusion current +[1-0(h—he D10 (he—he, )], (26)

[14], the WV model is shown to belong to the EW univer-
sality class. Therefore, it can be argued that &), which @
describes the WV model, most likely will obey the EW be- Wi~ = 8(hk—1,hi) 6(h,hi )[ 1= O (hy_1—hy_)]
havior in 141 dimensions. A recent work carried out by Kim 1
[35] is instructive, where a discrete model following an X ®(hk+1_hk+2)+_[1_®(hk+1_hk+2)])
equation dh/dt=v,V2h—v,V*h+\3V-(Vh)3+ 75  with 2
v,<0 and\3>0 is studied in #1 dimensions. Even when
the value of\ 3 is smaller than that of,, the equation is + 5(hk,hk+l)[1—®(hk1—hk)](®(hk+1—hk+2)
shown to belong to the EW universality class. The surface
currentj(m,t), wherem is the slope of the titled surface, is 1
also investigated and the effectiver, is given as + z[l—®(hk+1—hk+2)]
vEi(t)=—j’(m=0t)~v,+3((Vh)?) for small m. Then
the A 13 term is believed to result in a positive effective X[1=0(hg_1—h_2)][1—O(hg;1—hy)]
and subsequently lead to a downhill current. The case 1
here for the WV model is similar and the effective Tra _ _ _
can be written as vS"(t)~((Vh)?[3\13+5\15(Vh)?] " 2[1 Oh-1=hoJ[1=0 (s —hl. (27
+(Vh)5[7N17+ 9N 1o(Vh)2]+ - - ). When the fluctuation
c_aused by th_e ms_tabl_llty grows rapidly with time, the Posi- w(® = s(h_1,h) (i, s D[ 1= O (i 1—hies )]
tive \45 nonlinearity is expected to balance the negative
N3 term; so iski9to N 47, etc. The fluctuation saturates until
a positive effectivev, is produced. This process is consistent
with the observation of the computer simulation for the WV
model[20], in which the step height fluctuation grows rap-
idly and saturates at a very late time.

Although the discussion above is just phenomenological
and qualitative and needs to be verified by further extensive n E[l—@(h —
work, we can expect that the WV model governed by @3. 2 k=1 k-2

1
+§5(hk,hk71)

1
X| O(h_1—h )+ 5[1_®(hk—1_ hk—z)])
+ 5(hk1-hk)[1_®(hk+l_hk)]( O(h_1—he )

1
+ 5 0hhy o)
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[1-0(he_;—h)I[1-O(hs1—hein)] continuum equation are derived in the one-dimensional sub-
strate growth, it is straightforward to generalize to the isotro-
pic two-dimensional case. The growth equations derived
here show that these two similar growth models belong to
different universality classes. The physical process of the
and it is easy to check that they also obey the idertfify. WV model is governed by the conserved continuum equation

The next is the regularization procedure. Using the samé2) without the EW term. But this model is expected to be-
expanding method as for the WV model and inser(@§—  long to the EW universality because of th& (Vh)2"+1
(28) into (17) and (18), we have, up tdD(a®), nonlinearities. It is interesting that we derive the VLD

i 2 (a2 growtg equationhforr] the DT model. Altgoug? thisdresult isin
a accordance with the recent suggesti¢@21], it does not

K®(x)= = l_Ala4m+(_A§+2A2)a4W( ) satisfy the numerical simulations befdi&4,19.

The only difference between the derived growth equations

+0(a%), of the WV and the DT model is th€ - (Vh)?"* 1 nonlineari-

ties. The WV model with these terms is expected to obey the
EW behavior, but the DT model will not. This difference
between the two continuum equations is physically attributed
to the difference between the basic microscopic processes of
Therefore, from Eq(8) we obtain that the DT model is gov- the two growth models. In-t1 dimensions the WV model
erned by the continuum growth equati¢8), which is the allows only downward jumps and generates the downbhill
VLD equation. The coefficients,, \,,, andF in Eq.(3) are  surface current that leads to the scaling properties of the EW
the same as those in E@4) and the noise; is given by the  class. It has been pointed out by Krug, Plischke, and Siegert
same formula25). As discussed in Sec. IA;>0 and then [14] that there is no surface current if-1 dimensions if no
v,>0 and\,,<0. According to the argument by Kim, Park, distinction is made between kink sites and trapping sites and
and Kim[7], we note that since in the DT model the particle any net current is generated in the WV model solely on ac-
landing at a single-bond site relaxes to the nearest kink sit&ount of the events in which a particle has a choice between
in contrast to the case discussed by Lai and Das Sétfja a trapping site and a kink site. But as shown from the growth
or the conserved RSOS modgl], the surface current is rule in Sec. lll, the particles make no distinction between
generated from the lower-sloped region to the higher-slopetfapping sites and kink sites in the DT model. Therefore, this
region. From Eq.(3) we can write the surface current as Symmetry possessed by the DT model cannot generate the
V[ v,V?h—X,(Vh)?]; thus it can be argued rough[y,8] surface current explicitly and subsequently cannot lead to the
that A », should be negative in the DT model, which is in EW behavior, that is, it will not generate tH- (Vh)2"**
agreement with our derivation. nonlinearity.

There is nox 13V (Vh)2 nonlinearity in above derivation Since with the exception of the difference discussed
for the DT model, but the EW term will be generated if the above these two models obey the same growth rule, we can
non]inearitiesV.(Vh)2n+l exist in a higher-order expan- obtain the VLD growth equation of the DT model direCtIy
sion. If so, the surface current would appear, but previoudrom that of the WV model by precluding thHé. (Vh)>"*!
work showed that there is no surface current in the DT modelerms, which induces the EW behavior, from E8). More-

[14]. To investigate the model more explicitly, we expandoVer, from the derivations in Secs. Il and Il we note that in

K™ to higher orders and obtain results similar to those foPoth Egs.(2) and(3), the explicit expressions for the coeffi-
the WV model except for the ternm®- (Vh)2™*1, that is, as  CleNts of V#h and V?(Vh)? terms are the same, and so are

; ; the forms of higher linear and nonlinear terms. This reflects
in the WV model the terms o®(a®") for K{*) vanish, be- g

cause of the isotropic growth in the DT model, and the lineafN® Similarities between the microscopic processes of two

terms V2""2h the nonlinearities V2™ 1. (Vh)21+1 discrete models. _ .
(m#1), andV2™(Vh)2" are derived. Thus the nonlinearities __ oM the two growth equations describing the WV and
V.(Vh)2"*1 do not arise and consequently no EW term isDT models, the crossover behaviors can be expected. Be-

enerated in the DT model. The physical origin of this result®34S€ of the similaritie; between the growth equati@s
gan be obtained from the microsréo)p/)ic procegss of the mode(Tfnd(S) that we have derived and also the growth rules, these

1
+5[1=0(he-1=hJ[1=0 (N —h)], (28

X

2
K(Z)(x,x’)=a75(x—x’)+0(a6). (29

which will be discussed in Sec. IV. Therefore, in the absenc wo models will show similar behavior on short time and
of V-(Vh)2"*1 terms, the most relevant term ¥&2(Vh)?2 ength scales, although they asymptotically belong to differ-

which can be generated also from higher-order term nt l_miversali'_[y classes fand the scaling t_)ehavi_or of Herring-
V2(Vh)2" [31], and we have the conclusion that the DT uII|_ns equation(1) obtamed by former simulations can be
model obeys the scaling properties of VLD type with the_c:onS|dered as a transient effect. A number of humerical stud-
exponents  a=(5—d)/3,  B=(5—d)/(7+d) and €S have been done to observe the crossover effects and show
7=(7+d)/3 ’ ' the EW scaling behay|or f_or the_ WV model. But for_the DT

' model, further extensive simulations need to be carried out to

verify the above conclusion.
IV. DISCUSSION AND CONCLUSION
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