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We derive the growth equations for the Wolf-Villain and Das Sarma–Tamborenea models based on the
master-equation method. The Wolf-Villain model is shown to obey the conserved growth equation
]h/]t52n4“

4h1l22“
2(“h)21(n51

` l12n11“•(“h)
2n111F1h, which is expected to exhibit the scaling

behavior of the Edwards-Wilkinson universality class. We find that the Das Sarma–Tamborenea model is
governed by the Villain–Lai–Das Sarma equation]h/]t52n4“

4h1l22“
2(“h)21F1h in contrast to

former results. The physical origin of the difference between these two similar models is also discussed.
@S1063-651X~96!00611-3#

PACS number~s!: 05.40.1j, 81.15.Hi, 68.35.Fx

I. INTRODUCTION

Kinetic roughening of nonequilibrium surface growth has
been of great interest in recent years. The kinetic growth
processes have been intensively studied via various discrete
models and continuum equations and exhibit nontrivial scal-
ing behavior@1,2#. The surface widthW, which is the root-
mean-square fluctuation of the surface height, scales as
W(L,t);La f (t/Lz), where the scaling functionf (x) is con-
stant for x@1 and xb for x!1 with b5a/z. The scaling
behaviors of the growth are characterized by the roughness
exponenta, the growth exponentb, and the dynamical ex-
ponent z, and these exponents determine the universality
class.

Recently, much attention has been paid to the surface
growth via molecular-beam epitaxy~MBE! @3–11#. The con-
served growth conditions are applied in the idealized MBE
without both defect and evaporation, and there are many dis-
crete models@3–8# describing this type of growth process.
The simulations using these discrete models are carried out
according to the given growth rules that govern the physical
properties of surface growth. Among a large number of
growth models, two similar microscopic models proposed,
respectively, by Wolf and Villain@5# and Das Sarma and
Tamborenea@6# have attracted much interest. Instead of
moving to the local height minimum, the deposited particles
relax into sites maximizing the coordination numbers in the
Wolf-Villain ~WV! model or to neighboring kink sites in the
Das Sarma–Tamborenea~DT! model, respectively. In the
early simulations@5,6#, the two models were shown to be
within the same universality class and follow the Herring-
Mullins linear diffusion equation@12#

]h

]t
52n4¹

4h1h, ~1!

where h(x,t) is the height of the surface at timet in
d5d811 dimensions,d8 is the substrate dimension,x is
d8-dimensional vector, andh is the nonconserved Gaussian
white noise.

However, numbers of recent extensive studies@4,13–17#
cast doubt on the original results and suggested that these
two diffusion models actually belong to different universality
classes in spite of their apparent similarities. Much more
attention has been focused on the WV model. Some numeri-
cal simulations@4,13# have shown that in 211 dimensions
the WV model corresponds to the Villain–Lai–Das Sarma
~VLD ! equation@9,10# with the relevant¹2(¹h)2 nonlinear-
ity. But a detailed analysis based on the study of surface
diffusion current @14# and computer simulations@15# re-
vealed that the WV model asymptotically belongs to the
Edwards-Wilkinson~EW! universality class@18# correspond-
ing to a continuum differential equation with the¹2h EW
term. More recently, crossover behavior in the WV model
has been observed in both 111 and 211 dimensions@16,17#.
Extensive computer simulation was carried out by Sˇmilauer
and Kotrla@16# to show the crossover from the scaling be-
havior of linear equation~1! to the VLD behavior and finally
the crossover to the EW class. Moreover, according to a
natural extension of the WV model within the next-nearest-
neighbor approximation, which leads to no change of the
main results, Ryu and Kim@17# observed the crossover effect
from the VLD behavior to the EW class in a clearer manner.
In these studies@16,17#, the WV model is thought to be
governed by a continuum growth equation with the existence
of the¹2h EW term, which is more relevant than all other
nonlinear terms and determines the asymptotic behavior of
the model.

It has been found by studying the height-height correla-
tion function and the structure factor@19# that the DT model
obeys anomalous dynamic scaling. A similar result has been
presented for the WV model@20,16#. Recently, it has been
suggested by Krug@21# that in the absence of tilt invariance
the DT model may be described by a continuum growth
equation with an infinite sequence of relevant terms
l22¹

2(¹h)21l24¹
2(¹h)41•••, which is just the VLD

equation if only the first nonlinearity is kept. Halpin-Healy
and Zhang@2# also estimated that the DT model results in the
asymptotic behavior that most likely will be VLD based on
the analysis of the tilt-dependent surface current proposed by
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Krug, Plischke, and Siegert@14#. But to our knowledge,
these suggestions have not been verified by numerical simu-
lation or analytical deduction.

There have been several attempts to establish the equiva-
lence between the discrete growth models and corresponding
continuum growth equations@3–10#. Most of the work is
done numerically by comparing the simulated exponents of
the discrete models with those of the continuum equations.
There are also some analytic studies to establish the connec-
tion @22–26#. Beginning with the master-equation descrip-
tion, Vvedenskyet al. @22,23# proposed a systematic method
to derive the continuum equations from growth rules of the
discrete models. Originally, this method was introduced for
the Arrhenius-type surface processes@22,23#, and recently it
has been successfully applied@24# to deriving the Kardar-
Parisi-Zhang equation@27# from the restricted solid-on-solid
~RSOS! model @28#.

In this work we investigate the WV and DT models by
deriving their corresponding growth equations in 111 di-
mensions based on the method of Vvedenskyet al. @22,23#.
For the WV model, the EW term (“2h) does not exist; in-
stead, the continuum growth equation becomes

]h

]t
52n4“

4h1l22“
2~“h!2

1 (
n51

`

l12n11“•~“h!2n111F1h, ~2!

wheren4, l22, andl12n11 are growth coefficients andF is
the deposition flux. According to the conclusion of both the
direct numerical integration@29# and the dynamical
renormalization-group~DRG! analysis@30,31#, the relevant
“•(“h)2n11 term in Eq.~2! is verified to produce the scal-
ing properties of the EW class ifl12n11 is positive. How-
ever, we obtain thatl13,0, l15.0, l17,0, l19.0, . . . ,
that is, the coefficientsl12n11 are negative and positive al-
ternatively. In 111 dimensions, we expect Eq.~2! to obey
the EW asymptotic behavior according to some phenomeno-
logical analyses, although further extensive studies are
needed. We also find that the DT model is governed by the
VLD equation

]h

]t
52n4“

4h1l22“
2~“h!21F1h, ~3!

which is inconsistent with the previous numerical simula-
tions @6,4,19#, but confirms the estimation of Halpin-Healy
and Zhang@2#.

In Secs. II and III we show the derivation of the growth
equations for the WV model and the DT model, respectively.
The discussion and conclusion are presented in Sec. IV.

II. GROWTH EQUATION FOR THE WOLF-VILLAIN
MODEL

The derivation process in the method of Vvedenskyet al.
@22,23# begins with the master-equation description of the
microscopic dynamics of the discrete model. With the given
transition rates between configurations of the lattice, the non-
linear discrete Langevin equation and its associated noise

covariance can be obtained. Subsequently, a nonrigorous
regularization procedure is introduced to pass to the con-
tinuum limit and the continuum stochastic equation is di-
rectly derived. Here we use the method for one-dimensional
substrate growth@22# to derive the continuum growth equa-
tion for the WV model, and the generalization to higher di-
mensions is straightforward@23#.

First, we specify the configuration of the surface by
H5$h1 ,h2 , . . . %, where hi , i51,2, . . . , are thecolumn
height variables. The evolution of the joint probability distri-
bution P(H;t) is determined by a birth-death-type master
equation

]P~H;t !

]t
5(

H8
W~H8,H!P~H8;t !2(

H8
W~H,H8!P~H;t !,

~4!

whereW(H,H8) is the transition rate from the configuration
H to the configurationH8 and reflects the microscopic pro-
cess of the discrete model.

The above master equation can be turned into the
Kramers-Moyal form@32# with the transition moments of
W(H,H8). In the limit of large system size, it has been
shown by Fox and Keizer@33# that only the first and second
transition moments

Ki
~1!5(

H8
~hi82hi !W~H,H8!, ~5!

and

Ki j
~2!5(

H8
~hi82hi !~hj82hj !W~H,H8!, ~6!

are required, and the Kramers-Moyal form reduces to the
Fokker-Planck equation

]P~H;t !

]t
52

]

]hi
@Ki

~1!P~H;t !#1
1

2

]2

]hi]hj
@Ki j

~2!P~H;t !#,

~7!

which is equivalent to the Langevin equation

dhi
dt

5Ki
~1!1h i~ t !. ~8!

The Gaussian white noiseh i in Eq. ~8! satisfies

^h i~ t !&50, ~9!

^h i~ t !h j~ t8!&5Ki j
~2!d~ t2t8!. ~10!

In previous work, the Langevin equation~8! was obtained
on the condition that the intrinsic fluctuations are not too
large@22,24#. When the intrinsic fluctuations grow large and
consequently the distributionP(H;t) becomes broad, we can
make use of a limit theorem of Kurtz@34# to handle the large
intrinsic fluctuations. Therefore, as shown by Fox and Keizer
@33#, the Kurtz limit theorem produces the Fokker-Planck
equation~7!, which is equivalent to Eq.~8! in the Itôversion
of stochastic calculus. Thus, for the MBE growth models
such as the WV and DT models, where the surfaces are very
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rough and the step height distribution spreads out@20,21#,
the Langevin equation~8! can determine the growth dynam-
ics of the models and give a description of the rough growth
surfaces. Therefore, to obtain the explicit form of the discrete
Langevin equations and the noise covariance, we should de-
termine the quantityW(H,H8) according to the growth rule
of the specific discrete model and, subsequently, the transi-
tion momentsKi

(1) andKi j
(2) using Eqs.~5! and ~6!.

In the WV model @5#, a particle is deposited onto the
substrate randomly and is allowed to relax into the surface
site with the strongest binding, i.e., the largest coordination
numbers. If more than one neighboring site is equally pref-
erable, one of them is chosen at random. During the growth
process, if a particle sticks on one sitei , hi→hi1a, where
a is the lattice constant. We suppose that the average depo-

sition time for a layer ist and the configuration of the lattice
is changed via random deposition at an average rate of
t21. Therefore, the transition rate is written as

W~H,H8!5t21(
k

Fwk
~1!d~hk8 ,hk1a!)

jÞk
d~hj8 ,hj !

1wk
~2!d~hk218 ,hk211a! )

jÞk21
d~hj8 ,hj !

1wk
~3!d~hk118 ,hk111a! )

jÞk11
d~hj8 ,hj !G ,

~11!

where

wk
~1!5Q~hk212hk22!Q~hk112hk12!d~hk21 ,hk!

3d~hk11 ,hk!1Q~hk212hk!Q~hk112hk!2d~hk21 ,hk!d~hk11 ,hk!1@12Q~hk2hk21!#

3@12Q~hk112hk!#Q~hk112hk12!1Q~hk212hk22!@12Q~hk212hk!#

3@12Q~hk2hk11!#, ~12!

wk
~2!5d~hk21 ,hk!d~hk ,hk11!@12Q~hk212hk22!#

3~Q~hk112hk12!1 1
2 @12Q~hk112hk12!# !

1d~hk ,hk11!@12Q~hk212hk!#@Q~hk112hk12!

1@12Q~hk112hk12!#~@12Q~hk212hk22!#1 1
2Q~hk212hk22!!#

1 1
2 d~hk21 ,hk!@12Q~hk112hk!#@12Q~hk212hk22!#Q~hk112hk12!

1@12Q~hk212hk!#@12Q~hk112hk!#~@12Q~hk212hk22!#Q~hk112hk12!1 1
2 $Q~hk212hk22!Q~hk112hk12!

1@12Q~hk212hk22!#@12Q~hk112hk12!#%!1@12Q~hk212hk22!#@12Q~hk212hk!#@12Q~hk2hk11!#, ~13!

and

wk
~3!5d~hk21 ,hk!d~hk ,hk11!@12Q~hk112hk12!#~Q~hk212hk22!1 1

2 @12Q~hk212hk22!# !

1 1
2 d~hk ,hk11!@12Q~hk212hk!#@12Q~hk112hk12!#Q~hk212hk22!1d~hk21 ,hk!@12Q~hk112hk!#

3@Q~hk212hk22!1@12Q~hk212hk22!#~@12Q~hk112hk12!#1 1
2Q~hk112hk12!!#

1@12Q~hk212hk!#@12Q~hk112hk!#~$Q~hk212hk22!@12Q~hk112hk12!#

1 1
2 $Q~hk212hk22!Q~hk112hk12!1@12Q~hk212hk22!#@12Q~hk112hk12!#%!

1@12Q~hk2hk21!#@12Q~hk112hk!#@12Q~hk112hk12!#. ~14!
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Thewk
(1) term presents the situation that a particle is depos-

ited at sitek and stays there, while thewk
(2) andwk

(3) terms
describe the processes that the deposited particle at sitek
hops to the nearest sitesk21 or k11, respectively.Q(x) in
these formulas is the unit step function defined by

Q~x!5H 1 if x>0

0 if x,0.
~15!

From Eqs.~12!–~14! we obtain the identity

wk
~1!1wk

~2!1wk
~3!51, ~16!

which guarantees that the average deposition rate per site
remainst21. From Eqs.~5! and ~6!, the first and second
transition moments become

Ki
~1!5

a

t
@wi

~1!1wi11
~2! 1wi21

~3! #, ~17!

Ki j
~2!5aKi

~1!d i j . ~18!

It is noted that formulas~16!–~18! are similar to those of
hot-atom effects discussed by Vvedenskyet al. @22#. Thus,
using Eqs.~8!–~10!, we can obtain the discrete Langevin
equation for the WV model.

Next, presuming that the discrete height variable of the
surfacehi(t) can be replaced by a analytic functionh(x,t),
we regularize the discrete Langevin equation by expanding
the nonanalytic quantities and replacing them with analytic
quantities. First, the step function can be approximated by an
analytic shifted hyperbolic tangent function and expanded in
a Taylor series@22,24#

Q~x!'11 (
k51

`

Akx
k. ~19!

Then taking the limit of lattice constanta→0, we expand
(hi612hi), (hi622hi61), etc., in powers ofa, and replace
hi(t) by a functionh(x,t) with x5 ia that is smooth at the
macroscopic scale. During the derivation, we also note the
relation

d~hi ,hj !5Q~hi2hj !1Q~hj2hi !21 ~20!

according to the definition~15! of the step function. There-
fore, substituting~12!–~14! into ~17! and ~18!, and expand-
ing up toO(a5), after simple but tedious deduction the tran-
sition moments are obtained as

K ~1!~x!5
a

t H 12A1a
4
]4h

]x4
12~2A1

212A2!a
4F S ]2h

]x2D
2

1S ]h

]xD S ]3h

]x3D G26A1
3a4S ]h

]xD
2S ]2h

]x2D J 1O~a6!

5
a

t F12A1a
4
]4h

]x4
1~2A1

212A2!a
4

]2

]x2 S ]h

]xD
2

22A1
3a4

]

]x S ]h

]xD
3G1O~a6! ~21!

and

K ~2!~x,x8!5
a2

t
d~x2x8!1O~a6!. ~22!

From Eq.~8!, the continuum growth equation for the WV
model is just described by Eq.~2! with only the first term
n51 in the infinite series, that is,

]h

]t
52n4“

4h1l22“
2~“h!21l13“•~“h!31F1h,

~23!

and the coefficients are given by

n45
a5

t
A1 ,

l225
a5

t
~2A1

212A2!,

l1352
2a5

t
A1
3 ,

F5
a

t
. ~24!

The noise covariance given in Eq.~10! is

^h~x,t !h~x8,t8!&5
a2

t
d~x2x8!d~ t2t8!. ~25!

Since the unit step function is approximated by the shifted
hyperbolic tangent function and tanhx;x2x3/3
12x5/15217x7/3151•••, we haveA1.0, A3,0, A5.0,
A7,0, . . . andA2, A4, A6 , . . . are very small and negli-
gible in Eq. ~19!. Therefore, from Eq.~24!, we obtain that
n4.0, which is consistent with the phenomenological con-
siderationl22,0 andl13,0.

The fourth-order conserved growth equation~23! was
proposed by Lai and Das Sarma@10#, and“•(“h)3 nonlin-
earity is the most relevant term from the renormalization-
group viewpoint. Although there is no EW term in Eq.~23!,
the direct numerical integration study@29# and the one-loop
DRG calculation@30# showed that for positivel13 the calcu-
lated exponents are consistent with those of the EW univer-
sality class in 111 dimensions. However, the coefficient
l13 we derive is negative, which gives rise to unstable sur-
face growth. This result of instability is surprising and con-
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tradicts the results of numerical simulations@15–17# and the
analysis of surface diffusion current@14#. Thus we expand
Ki
(1) to higher orders. We find that the terms ofO(a2n) for

Ki
(1) @i.e., the odd order ofa, O(a2n21), for wi

(1)1wi11
(2) 1

wi21
(3) # vanish, which is due to the symmetry between sites

i1n and i2n in the surface, that is, the consideration of
isotropic surface growth in the model. The terms appearing
in the growth equation are (m,n>1) the linear terms
“

2n12h, the nonlinearities“2m21
•(“h)2n11, which gener-

ate terms“2m22
“

2h according to the DRG analysis by
Kshirsagar and Ghaisas@31#, and the nonlinearities
“

2m(“h)2n, which generate terms“2m(“h)2 also according
to Kshirsagar and Ghaisas@31#. Among these, the most rel-
evant terms are“•(“h)2n11, which lead to the EW term
“

2h if the corresponding coefficients are positive. Therefore,
keeping the meaningful lowest-order terms“4h and
“

2(“h)2, we obtain the growth equation~2! for the WV
model.

We also obtain the explicit forms of coefficientsl12n11
of the relevant nonlinearities“•~“h!2n11: l13522a5A1

3/t
as in ~24! and l155(26A1

2A324A1
3A212A1A2

2)a7/t. In
the forms ofl17 andl19 there are 7 and 13 terms, respec-
tively, and we show only the leading ones:
l175(26A1

2A526A1A3
21•••)a9/t and l195(26A1

2A7

212A1A3A522A3
31•••)a11/t, where the ellipses represent

terms with negligibleA2, A4, and A6. From the signs of
A1, A3, A5, andA7 shown above, we havel13,0, l15.0,
l17,0, l19.0, . . . .

Thus it is interesting to discuss the properties of Eq.~2!
where the coefficientsl12n11 of the relevant terms are nega-
tive and positive alternatively. For the WV model only the
downhill surface current is generated in 111 dimensions,
and according to the method of surface diffusion current
@14#, the WV model is shown to belong to the EW univer-
sality class. Therefore, it can be argued that Eq.~2!, which
describes the WV model, most likely will obey the EW be-
havior in 111 dimensions. A recent work carried out by Kim
@35# is instructive, where a discrete model following an
equation ]h/]t5n2“

2h2n4“
4h1l13“•(“h)

31h with
n2,0 andl13.0 is studied in 111 dimensions. Even when
the value ofl13 is smaller than that ofn2, the equation is
shown to belong to the EW universality class. The surface
current j (m,t), wherem is the slope of the titled surface, is
also investigated and the effectiven2 is given as
n2
eff(t)52 j 8(m50,t)'n213^(“h)2& for small m. Then
the l13 term is believed to result in a positive effectiven2
and subsequently lead to a downhill current. The case
here for the WV model is similar and the effectiven2
can be written as n2

eff(t)'^(“h)2@3l1315l15(“h)
2#

1(“h)6@7l1719l19(“h)
2#1•••&. When the fluctuation

caused by the instability grows rapidly with time, the posi-
tive l15 nonlinearity is expected to balance the negative
l13 term; so isl19 to l17, etc. The fluctuation saturates until
a positive effectiven2 is produced. This process is consistent
with the observation of the computer simulation for the WV
model @20#, in which the step height fluctuation grows rap-
idly and saturates at a very late time.

Although the discussion above is just phenomenological
and qualitative and needs to be verified by further extensive
work, we can expect that the WV model governed by Eq.~2!

without the“2h term is of EW type. From the terms in Eq.
~2!, one can expect the crossover behaviors that have been
found by computer simulations@16,17#. The long time
needed to observe the crossover to EW behavior may be due
to the very small value of coefficientsl12n11 of
“•(“h)2n11 nonlinearities.

III. GROWTH EQUATION FOR THE
DAS SARMA–TAMBORENEA MODEL

The DT model is also a random-deposition model and the
growth rule is@6# that the deposited particles can relax into
the nearest kink sites. In the WV model the particles depos-
ited at kink sites with coordination numberNc52 will move
to trapping sites withNc53, while they will stay at kink
sites in the DT model. Moreover, in contrast to the WV
model, the particles deposited at single-bond sites with
Nc51 choose the nearest kink or trapping sites with the
same possibility. Consequently, there is no distinction be-
tween kink sites and trapping sites in the DT model.

The procedure of deriving the continuum growth equation
of the DT model is similar to that of the WV model in Sec.
II. The first step is to write down the transition rate according
to the growth rule. The forms ofW(H,H8) and the transition
momentsKi

(1) andKi j
(2) are the same as those of Eqs.~11!,

~17! and~18!, butwk
(1) ,wk

(2), andwk
(3) are different because

of the different growth rule. They are written as

wk
~1!5Q~hk212hk22!Q~hk112hk12!d~hk21 ,hk!

3d~hk ,hk11!1@12Q~hk2hk21!#Q~hk2hk11!

1Q~hk2hk21!@12Q~hk2hk11!#

1@12Q~hk2hk21!#@12Q~hk2hk11!#, ~26!

wk
~2!5d~hk21 ,hk!d~hk ,hk11!@12Q~hk212hk22!#

3S Q~hk112hk12!1
1

2
@12Q~hk112hk12!# D

1d~hk ,hk11!@12Q~hk212hk!#S Q~hk112hk12!

1
1

2
@12Q~hk112hk12!# D1

1

2
d~hk ,hk21!

3@12Q~hk212hk22!#@12Q~hk112hk!#

1
1

2
@12Q~hk212hk!#@12Q~hk112hk!#, ~27!

wk
~3!5d~hk21 ,hk!d~hk ,hk11!@12Q~hk112hk12!#

3S Q~hk212hk22!1
1

2
@12Q~hk212hk22!# D

1d~hk21 ,hk!@12Q~hk112hk!#S Q~hk212hk22!

1
1

2
@12Q~hk212hk22!# D1

1

2
d~hk ,hk11!
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@12Q~hk212hk!#@12Q~hk112hk12!#

1
1

2
@12Q~hk212hk!#@12Q~hk112hk!#, ~28!

and it is easy to check that they also obey the identity~16!.
The next is the regularization procedure. Using the same

expanding method as for the WV model and inserting~26!–
~28! into ~17! and ~18!, we have, up toO(a5),

K ~1!~x!5
a

t F12A1a
4
]4h

]x4
1~2A1

212A2!a
4

]2

]x2 S ]h

]xD
2G

1O~a6!,

K ~2!~x,x8!5
a2

t
d~x2x8!1O~a6!. ~29!

Therefore, from Eq.~8! we obtain that the DT model is gov-
erned by the continuum growth equation~3!, which is the
VLD equation. The coefficientsn4, l22, andF in Eq. ~3! are
the same as those in Eq.~24! and the noiseh is given by the
same formula~25!. As discussed in Sec. II,A1.0 and then
n4.0 andl22,0. According to the argument by Kim, Park,
and Kim @7#, we note that since in the DT model the particle
landing at a single-bond site relaxes to the nearest kink site,
in contrast to the case discussed by Lai and Das Sarma@10#
or the conserved RSOS model@7#, the surface current is
generated from the lower-sloped region to the higher-sloped
region. From Eq.~3! we can write the surface current as
“@n4“

2h2l22(“h)
2#; thus it can be argued roughly@7,8#

that l22 should be negative in the DT model, which is in
agreement with our derivation.

There is nol13“•(“h)
3 nonlinearity in above derivation

for the DT model, but the EW term will be generated if the
nonlinearities“•(“h)2n11 exist in a higher-order expan-
sion. If so, the surface current would appear, but previous
work showed that there is no surface current in the DT model
@14#. To investigate the model more explicitly, we expand
Ki
(1) to higher orders and obtain results similar to those for

the WV model except for the terms“•(“h)2n11, that is, as
in the WV model the terms ofO(a2n) for Ki

(1) vanish, be-
cause of the isotropic growth in the DT model, and the linear
terms “

2n12h, the nonlinearities “

2m21
•(“h)2n11

(mÞ1), and“2m(“h)2n are derived. Thus the nonlinearities
“•(“h)2n11 do not arise and consequently no EW term is
generated in the DT model. The physical origin of this result
can be obtained from the microscopic process of the model,
which will be discussed in Sec. IV. Therefore, in the absence
of “•(“h)2n11 terms, the most relevant term is“2(“h)2,
which can be generated also from higher-order terms
“

2(“h)2n @31#, and we have the conclusion that the DT
model obeys the scaling properties of VLD type with the
exponents a5(52d)/3, b5(52d)/(71d), and
z5(71d)/3.

IV. DISCUSSION AND CONCLUSION

We have obtained the continuum growth equations for the
WV and DT models of the ‘‘ideal’’ MBE using the master-
equation method and regularization procedure. Although the

continuum equation are derived in the one-dimensional sub-
strate growth, it is straightforward to generalize to the isotro-
pic two-dimensional case. The growth equations derived
here show that these two similar growth models belong to
different universality classes. The physical process of the
WV model is governed by the conserved continuum equation
~2! without the EW term. But this model is expected to be-
long to the EW universality because of the“•(“h)2n11

nonlinearities. It is interesting that we derive the VLD
growth equation for the DT model. Although this result is in
accordance with the recent suggestions@2,21#, it does not
satisfy the numerical simulations before@6,4,19#.

The only difference between the derived growth equations
of the WV and the DT model is the“•(“h)2n11 nonlineari-
ties. The WV model with these terms is expected to obey the
EW behavior, but the DT model will not. This difference
between the two continuum equations is physically attributed
to the difference between the basic microscopic processes of
the two growth models. In 111 dimensions the WV model
allows only downward jumps and generates the downhill
surface current that leads to the scaling properties of the EW
class. It has been pointed out by Krug, Plischke, and Siegert
@14# that there is no surface current in 111 dimensions if no
distinction is made between kink sites and trapping sites and
any net current is generated in the WV model solely on ac-
count of the events in which a particle has a choice between
a trapping site and a kink site. But as shown from the growth
rule in Sec. III, the particles make no distinction between
trapping sites and kink sites in the DT model. Therefore, this
symmetry possessed by the DT model cannot generate the
surface current explicitly and subsequently cannot lead to the
EW behavior, that is, it will not generate the“•(“h)2n11

nonlinearity.
Since with the exception of the difference discussed

above these two models obey the same growth rule, we can
obtain the VLD growth equation of the DT model directly
from that of the WV model by precluding the“•(“h)2n11

terms, which induces the EW behavior, from Eq.~2!. More-
over, from the derivations in Secs. II and III we note that in
both Eqs.~2! and~3!, the explicit expressions for the coeffi-
cients of“4h and“2(“h)2 terms are the same, and so are
the forms of higher linear and nonlinear terms. This reflects
the similarities between the microscopic processes of two
discrete models.

From the two growth equations describing the WV and
DT models, the crossover behaviors can be expected. Be-
cause of the similarities between the growth equations~2!
and~3! that we have derived and also the growth rules, these
two models will show similar behavior on short time and
length scales, although they asymptotically belong to differ-
ent universality classes and the scaling behavior of Herring-
Mullins equation~1! obtained by former simulations can be
considered as a transient effect. A number of numerical stud-
ies have been done to observe the crossover effects and show
the EW scaling behavior for the WV model. But for the DT
model, further extensive simulations need to be carried out to
verify the above conclusion.
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